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Quantum circuit design for solving linear systems of equations

Yudong Caoa, Anmer Daskinb, Steven Frankela and Sabre Kaisc*

aDepartment of Mechanical Engineering, Purdue University; bDepartment of Computer Science, Purdue University;
cDepartment of Chemistry, Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

(Received 9 January 2012; final version received 14 February 2012)

Recently, it has been demonstrated that quantum computers can be used for solving linear systems of algebraic
equations with exponential speedup compared with classical computers. Here, we present an efficient and generic
quantum circuit design for implementing the algorithm for solving linear systems. In particular, we show the
detailed construction of a quantum circuit which solves a 4� 4 linear system with seven qubits. It consists of only
the basic quantum gates that can be realized with present physical devices, implying great possibility for
experimental implementation. Furthermore, the performance of the circuit is numerically simulated and its ability
to solve the intended linear system is verified.
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Quantum computers are devices that take direct

advantage of quantum mechanical phenomena such

as superposition and entanglement to perform compu-

tations [1]. Because they compute in ways that classical

computers cannot, for certain problems quantum

algorithms provide exponential speedups over their

classical counterparts. For example, in solving pro-

blems related to factoring large numbers [2] and

simulation of quantum systems [3–17], quantum

algorithms are able to find the answer exponentially

faster than classical algorithms. Recently, Harrow

et al. [18] proposed a quantum algorithm for solving

linear systems of equations with exponential speedup

over the best known classical algorithms.
With the theoretical potential of the algorithm, an

equally important issue is to render the algorithm

viable for experimental implementation. Therefore, in

this work we present a generic quantum circuit design

based on the theoretical framework outlined by the

algorithm. Particularly, the original work [18] did not

elaborate on the circuit design for implementing

��1j -controlled rotation when only �j is available.

Hence in this work we present a scalable design of

the quantum circuit for finding the reciprocals of the

eigenvalues �j and stored them in a quantum register

with a superposition of states that encode the values

of ��1j in binary format. The runtime scaling of this

inverting circuit is O(logN), which retains the advanta-

geous O(logN) runtime for the overall algorithm.

For the purpose of showing a concrete numerical

example of how this scheme works, we choose a
specific linear system (described by a matrix A of
dimension 4� 4) as the numerical example of the
algorithm. Since our circuit involves only seven qubits
and is composed of only basic quantum gates, our
work bridges the theoretical development of the
algorithm with the possibility of physical implementa-
tion by experimentalists.

The algorithm [18] solves the problem Ax¼ b
where A, a Hermitian d-sparse N�N matrix, and b,

a unit vector, are given. The major steps of the

algorithm can be summarized as the following:

(1) Represent the vector b as a quantum state

jbi ¼
PN

i¼1bijii stored in a quantum register (termed

B), where jii represents a basis state of the register B

where the states of the qubits represent the binary

coding of i. In a separate quantum register (termed C)

of t qubits, initialize the qubits by transforming the

register to state
P
�j�i from j0i. Here j�i represents a

basis state of the register C where the states of the

qubits represent the binary coding of �. (2) Apply the

conditional Hamiltonian evolution
PT�1

�¼0 j�ih�j
C�

exp½iA�t0=TÞ. (3) Apply the quantum inverse Fourier

transform to the register C. Denote the basis states

after quantum Fourier transform as jki. At this stage,

the amplitudes of the basis states are concentrated on k

values that satisfy �k� 2�k/t0, where �k is the kth

eigenvalue of the matrix A. (4) Add an ancilla qubit

and apply conditional rotation on it, controlled by the

register C with jki� j�ki. The rotation tranforms
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the qubit to ½1� ðC2=�2j Þ�
1=2
j0i þ ðC=�jÞj1i. This is a

key step of the algorithm and it involves finding the
reciprocal of the eigenvalue �j quantum mechanically,
which is not a trivial task on its own. We will elaborate
on how to achieve this later in this work.
(5) Uncompute the registers b and C. (6) Measure the
ancilla bit. If it returns 1, the register b of the system is

in the state
Pn

j¼1 �j�j
�1juji up to a normalization

factor, which is equal to the solution jxi of the linear
system Ax¼ b. Here juji represents the jth eigenvector
of the matrix A and let jbi ¼

Pn
i¼1 �j juji.

Based on the theoretical framework of the algo-
rithm outlined above, here we present a generic
quantum circuit design that implements the algorithm
to find the solution jxi to the linear equation
Ajxi¼ jbi. The circuit contains registers B, C, M, L
and an ancillary qubit (Figure 1). The detailed matrix
forms of the quantum gates are presented in Appendix
1. Here the time parameter t0 for all Hamiltonian
simulations is defined to be 2�. Register B is used to
store the value of jbi. Register C, M and L contain t, m
and l qubits respectively. the Walsh–Hadamard trans-
form on Register C, the controlled Hamiltonian
simulation and the inverse Fourier transform ideally
gives a state

P
j �jj�jijuji [18] in Register B and C. At

the same time, Walsh–Hadamard transform and
controlled global phase shift Rzz is applied to register
L and M (Figure 1) and the state of the two registers
becomes

P
p

P
sexp[i(p/2

m)t0]jsijpi, where jpi and jsi
represent the basis states of the register M and L
respectively. Details of this part of the circuit is shown
in Figure 2. After the inverse Fourier transform is
executed on register C, we use its j�ji states stored in
register C as a control for a Hamiltonian simulation
exp(iH0t0) that is applied on register M (details in
Figure 3). Here H0 is defined as a diagonal matrix
whose diagonal elements are (1, 2, . . . , 2m�1). Due to
the unitary nature of exp(iH0t0), the operation
exp(iH0t0) can be readily decomposed into a quantum

circuit [19,20] that consists of only basic quantum
gates.

We further establish the control relationship
between Register L and the exp(iH0t0) by using the
the klth qubit (Figure 3) of the register L to control a
exp½�ipðð�j=2

mÞð1=2l�kl Þt0Þ� simulation that acts on
register M. The values of binary numbers stored in
register L are then able to determine the time
parameter t in the overall Hamiltonian simulation
exp(�iH0t). Following such construction, after the
Hamiltonian simulation exp(�iH0t0) the state of the
system is

j0i �
Xn
j¼1

X2m�1
p¼0

X2l�1
s¼0

�j exp i
p

2mþl
t0ð2

l � �jsÞ
h i

jsij pij�jijuji:

With t0¼ 2�, the states jsi is concentrated on values of
s¼ 2l/�j in the above expression (denote such jsi states
as j2l/�ji). This is because of the fact that sums of the
form

PN�1
k¼0 exp½2pikðr=NÞ� vanish unless r¼ 0 mod N.

Denote the components of the superposition states in
register L as j2l/�ji. Rotate the ancilla bit with the angle
shift controlled by the j2l/�ji states stored in register L:

Ryð2
l=�jÞj0i � 1�

C2

�2j

 !1=2

j0i þ
C

�j
j1i

with C being a constant. Uncomputing the three
registers (Figure 1), we are left with a state in register B
with the ancilla qubit proportional to

Xn
j¼1

ð1� C2=�2j Þ
1=2
j0i þ C=�j j1i

h i
� j000i � �jjuji:

Measuring the ancilla qubit and if we obtain j1i,
the state of the system will collapse to
j1000i �

Pn
j¼1 �j�

�1
j juji, where juji the first register

represents the solution. If the ancilla bit measures j0i,
the system is back to its original state j0000bi. If the
ancilla bit measures j1i, the state stored in the register
B is proportional to the solution of the linear system of
equations Ajxi ¼ jbi and the register B is no longer
entangled with any other registers in the system.
Therefore we have obtained the solution of the linear
system of equations in the form of a quantum
superposition state stored in the register B.

There are mainly two factors that influence the
number of qubits needed in register L and M. The first
one is the desired bit precision for encoding both �j and
1/�j. Clearly if one desires to encode a number with
precision �¼O(2q), at least q qubits are needed for the
register, which is true for any generic binary registers.
In addition to this factor, for the particular roles that
the register L and M play in the circuit, the condition

Figure 1. Overall circuit design. The registers from top to
bottom are respectively the ancillary qubit, register L, M, C
and B. The initial state is denoted as j0000bi. j fi ¼ ½1�
ðC2=�2j Þ�

1=2
j0i þ ðC=�j Þj1i. U

y represents uncomputation.
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number � of A and the condition number of the matrix

A is also important. In order for the inversion circuit to

work, 2m must be larger than any eigenvalue of A,

i.e. m�dlog �maxe. On the other hand in order to

encode all values of 1/�j register L must have enough

qubits such that even the largest one 1/�min can be

encoded, i.e. l�dlog �mine. Therefore m� l� log � is a
general constraint that m and l must comply with.

A detailed runtime analysis in [18] shows that the

runtime scales as O(log(N)d2) where d is the sparsity of

A. The circuit that we present here adds to the

algorithm the additional complexity of controlled

Hamiltonian simulation exp(iH0t0). However, it is

shown in [21] that exp(iAt) can be simulated in time

O(log(N)d2t). Therefore the Hamiltonian simulations

in this circuit design only add at most a constant

overhead to the cost scaling of the algorithm.
With the generic circuit model outlined above, now

we present a seven-qubit circuit for solving a system

with A of dimension 4� 4 as a numerical example. For

the numerical example we specifically choose the form

of matrix A such that it allows for a very simple ad hoc

design of the circuit for finding the reciprocal modulo

2t (in the seven-qubit case 2t¼ 16). For this example

we choose

A ¼
1

4

15 9 5 �3
9 15 3 �5
5 3 15 �9
�3 �5 �9 15

0
BB@

1
CCA: ð1Þ

Hence A is a Hermitian matrix with the eigenvalues
�i¼ 2i�1 and corresponding eigenvector juii ¼
1
2

P4
j¼1ð�1Þ

�ij j jiC, where jjiC represents the state of
register C which encodes the number j in binary form,
�ij is the Kronecker delta, and the index i runs from 1
to 4. Furthermore, we let b ¼ 1

2 ð1, 1, 1, 1Þ
T. Therefore,

jbi ¼
P4

j¼1 �jjuji and each �j ¼
1
2. To compute the

reciprocals of the eigenvalues, a quantum swap gate is
used (Figure 4) to exchange the values of the first and

third qubit. Therefore there is no need for specific
auxiliary registers M and L (Figure 1) in this example.
The eigenvalues are inverted to their reciprocals with

the swap gate in the following fashion. For example,
the eigenvalue �4¼ 8 is encoded as j1000i in register C,
after applying the swap gates it is transformed to

j0010i, which is equal to 1
8� 24 ¼ 2.

Figure 2. Detailed quantum circuit of the generic circuit implementation. This figure shows the Walsh–Hadamard transform,
j�i-controlled Hamiltonian simulation exp(iAt) and Fourier transform on the register C.
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Figure 4 shows the circuit. We use the Group
Leader Optimization Algorithm to find the circuit

decomposition of the Hamiltonian simulation operator
exp[iA(2�/16)] (see [19,20] for details, also see [1,22] for

general methods). Here we let t0¼ 2�. The resulting
quantum circuit for exp[iA(2�/16)] is shown in
Figure 4. With the decomposition of exp[iA(2�/16)]
readily available, the operators exp[iA(2�/8)],
exp[iA(2�/4)] and exp[iA(2�/2)] can be implemented

by simply multiplying the angle shifts in all the rotation
gates in the circuit for exp[iA(2�/16)] by a factor of 2,
4, and 8 respectively [19].

The final state of system, conditioned on obtaining

j1i in the ancilla bit, is (1/851/2)(8ju1i þ 4ju2i þ

2ju3iþ ju4i)�j0000i�j1i . Written in the standard
bases, it becomes (1/3401/2)(�j00iþ 7j01i þ 11j10i þ

13j11i), which is proportional to the exact solution of
the system x¼ (1/32)(�1, 7, 11, 13)T (Figure 5).

The quantum circuits (Figure 4) outlined above are
then simulated and the statistics of final states are
computed from the simulations (Figure 6).

The exponent r in the rotation gates R(n�/2r�1)
(Figure 4) is an important parameter that determines
the accuracy of the final state of the system, which
contains the solution to the linear system of equations.

As can be seen in Figure 6, when the value of r is
sufficiently large, say larger than 6, the probabilities of

measuring each basis state j00i, j01i, j10i and j11i

Figure 3. Hamiltonian Simulation exp(iH0t) which is controlled by reigster L and C. (a) A subroutine of the Hamiltonian
simulation of the matrix H0. Every gate labelled (u, v) in this diagram represents a quantum gate exp(�iH0t0/2

uþv). We denote
this subroutine as G(l� klþ 1). (b) The overall circuit as a cascade of the subroutines G(l� klþ 1). (c) Implementation of
exp[iH0(t/2

m)] in register M. The (u, v) gate can be realized by letting t¼ t0/2
uþv�m.
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Figure 4. Quantum circuit for solving Ax¼ b with A4�4 being the matrix shown in Equation (1). The first qubit at the top of the
figure is the ancilla bit. The four qubits in the middle stand for the register C. The two qubits at the bottom is the register that
stores the vector b. The detailed matrix forms of the quantum gates are presented in Appendix 1.

Figure 5. The final state of the algorithm for solving the
4� 4 system. The horizontal axis represents the decimal
value that corresponds to a basis state of the seven-qubit
system. The vertical axis represents the real parts of the
probability amplitudes that corresponds to a certain basis.

Figure 6. Simulation results on the dependence of the final
state on the value of the parameter r. The first bar plot shows
the probability distributions over the four basis states of
Register M with different values of r in the controlled
rotation gates acted upon the ancilla bit. The horizontal
dashed lines show the analytical values of the probabilities.
The two plots following show the probability of getting the
solution as well as the fidelity hx0jxi as functions of r.
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converge to the analytical values. Those analytical
values correspond to the analytical solution of the
4� 4 system x ¼ 1

64 ð�1, 7, 11, 13Þ
T. Furthermore, the

fidelity of the results hx
0

jxi increases as r is increased.
However, in Figure 6, as r grows beyond around 5, the
probability of measuring the ancilla bit as j1i decays,
which indicates that as r is increased, the solutions
obtained in the final state in register b becomes more
accurate yet less probable to attain.

In conclusion, in this work we present construc-
tions of quantum circuits, both general and particular,
for implementing the algorithm for solving linear
systems of equations. Our results may motivate
experimentalists with the capability of addressing
seven or more qubits and execute basic quantum
gates on their setups to implement the algorithm and
verify its results. Future work regarding the improve-
ment upon the algorithm needs to be focused on topics
such as extending the algorithm to cases where the
matrix A has a high condition number [23].
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Appendix 1

The matrix representations of the quantum gates and
algorithms used in this work are the following: X, Y and Z
gates which are the Pauli operators 	x, 	y and 	z and
Hadamard gate:

X ¼
0 1
1 0

� �
, Y ¼

0 �i
i 0

� �
, ð2Þ

Z ¼
1 0
0 �1

� �
, H ¼

1

21=2
1 1
1 �1

� �
: ð3Þ

The S gate and T gate (or 8/� gate) are

S ¼
1 0
0 i

� �
, T ¼

1 0
0 exp i

p
4

� � !
: ð4Þ

Square root of X gate (or NOT gate) and its conjugate are

V ¼
1

2

1þ i 1� i
1� i 1þ i

� �
, Vy ¼

1

2

1� i 1þ i
1þ i 1� i

� �
: ð5Þ

Rotation gates are

Rxð
Þ ¼
cosð
=2Þ i sinð
=2Þ
i sinð
=2Þ cosð
=2Þ

� �
, ð6Þ

Ryð
Þ ¼
cosð
=2Þ sinð
=2Þ
� sinð
=2Þ cosð
=2Þ

� �
, ð7Þ

Rzð
Þ ¼
1 0
0 expði
Þ

� �
, ð8Þ

Rzzð
Þ ¼
expði
Þ 0

0 expði
Þ

� �
: ð9Þ
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